Local Polynomial Regression Solution for Differential Equations with Initial and Boundary Values
نویسندگان
چکیده
منابع مشابه
Local Polynomial Regression Solution for Partial Differential Equations with Initial and Boundary Values
Local polynomial regression LPR is applied to solve the partial differential equations PDEs . Usually, the solutions of the problems are separation of variables and eigenfunction expansion methods, so we are rarely able to find analytical solutions. Consequently, we must try to find numerical solutions. In this paper, two test problems are considered for the numerical illustration of the method...
متن کاملNumerical Solution of Integro-Differential Equations with Local Polynomial Regression
In this paper, we try to find numerical solution of b d , . a y x p x y x g x K x t y t t y a a x b a t b d , . , a y x p x y x g x K x t y t t y a a x b a t b d x t y t t y a a or x by using Local polynomial regression (LPR) method. The numerical solution shows th...
متن کاملAn analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients
This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients. At first, the non-self-adjoint spectral problem is derived. Then its adjoint problem is calculated. After that, for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined. Finally the convergence ...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملFractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions
In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2013
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2013/530932